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The three-dimensional structures of symmetric and skew wave patterns in deep water 
observed in a tow tank and a wide basin are described. These symmetric waves are 
the result of three-dimensional subharmonic bifurcation of two-dimensional wave- 
trains with steepness a, k, > 0.25, where a ,  and k, are the wave amplitude and wave- 
number respectively. The wave profiles, local surface slopes and amplitude spectra 
at various cross-sections of the crescent-shaped symmetric waves are presented and 
discussed. 

The skew waves are another type of three-dimensional bifurcation from a uniform 
wavetrain, and occur most clearly when 0.16 7 aok, 7 0.18. These skew wave patterns 
are found to interact between two sets of themselves propagating from different 
directions, and to be subject to the Benjamin-Feir type modulations. The interactions 
cause compact three-dimensional wave packets. Agreement between experiment and 
theory is found for the case of symmetric wave patterns. The bifurcation of uniform 
Stokes waves into symmetric wave patterns provide a new physical process for direc- 
tional energy spreading. 

1. Introduction 
Saffman & Yuen (1980) have predicted the existence of two new types of three- 

dimensional permanent waveforms, resulting from bifurcations of a uniform two- 
dimensional Stokes wave on deep water, based on an equation due to Zakharov 
(1968) (see Crawford, Saffman & Yuen 1980). This equation is valid for weakly non- 
linear waves. The first type of bifurcation produces a steady symmetric wave pattern 
propagating in the same direction as the Stokes waves. A computation of the wave- 
forms for several configurations of the symmetric wave patterns is given by Meiron, 
Saffman & Yuen (1982). The second type produces the steady skew wave patterns that 
propagate obliquely from the direction of the Stokes waves. Their theory shows further 
that the skew waves are stable to infinitesimal disturbances. The purpose of this 
paper is to present experimental evidence for the existence and structures of the bi- 
furcated symmetric and skew wave patterns. The skew wave patterns in 3 3 are found 
to occur when the steepness of the initial Stokes waves is 0.1G 2 a,&, 7 0.18, where 
a, and k, are respectively the wave amplitude and wavenumber of the initial Stokes 
waves. I n  addition, two groups of the skew wave patterns propagating from different 
directions are observed to interact and to emerge subsequently from their interaction 
without apparent destruction of each other, in a manner similar to the interaction 
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between two trains of Stokes waves. Simultaneously, in the evolution of the three- 
dimensional wave, subharmonic modulations (Benjamin & Feir 1967; Longuet- 
Higgins 1978) of the skew wave patterns are observed to form a series of compact 
three-dimensional wave packets on deep water. 

The symmetric wave patterns in 9 4 are found to be most evident when 
0.25 < a,k, < 0.34, 

and are triggered by the newly discovered three-dimensional instability, which has a 
larger growth rate than the predominantly two-dimensional Benjamin-Feir-type 
instabilities for a,k, > 0-30 (McLean 1982; Su et al. 1982). Three configurations of 
symmetric wave patterns with different subharmonic lengths from two to four basic 
wavelengths have been found. 

The bifurcation of uniform Stokes waves into the skew wave patterns provides a 
physical process for directional wave energy spreading. It has been shown by Su et al. 
(1982) that the evolution of the symmetric wave patterns also leads to  directional 
energy spreading. Thus the Stokes-wave bifurcations may be significant factors in 
contributing to directional spectra of ocean waves. 

The experimental method will be described in $ 2, and observations and measure- 
ments in $83 and 4. Interpretation and discussion of these results in the light of existing 
theories on the instability and bifurcation of nonlinear waves will be made in $ 5. 

2. Experimental method 
Figure 1 shows t,he general layout of the experimental set-up used for skew-wave 

measurement located a t  the Naval Ocean Research and Development Activity. (The 
experimental set-up for symmet'ric wave patterns has been described in Su et nl. 
(1982).) The outdoor basin is I m deep and 100 by 340 m wide. The normal water 
depth for all the experiments reported in this paper is 0.80 m above the grass bottom, 
which is mowed before the experiments. The plunger-type mechanical wavemaker 
used has a crest length of 15.9 ni, a frequency range from 0.5 to 2.0 Hz, and an adjust- 
able stroke up to 0.305 m. The front face of the plunger is hyperbolic in shape. A 
rectangular grid made of markers sticking out of the water surface is installed in 
front of the wavemaker. These markers are separated by 6.1 m in both horizontal 
directions, with the origin of the grid reference a t  the centre of the plunger. The 
normal to the plunger will be designated as the x-axis, and the parallel as the y-axis, 
with y positive toward the left. 

A foldover tower of 70 f t  height is located in either of the locations A or B indicated 



Three-dimensional deep-water waves. Part 1 75 

in figure 1.  The tower is used for providing a vantage point for direct observations and 
for taking photographs and motion pictures of t,he evolving wave patterns. These 
photographs are found to be indispensable for studying the rather complex three- 
dimensional wave phenomena. 

In situ measurements of water-surface displacement due to  wavesin the time domain 
are made by an array of capacitance-type wave gauges, with the sensing wires made of 
double-coated magnet wire 0.5 mm in diameter. The surface-displacement records 
thus obtained are first low-pass filtered with a cut-off frequency of 40 Hz, digitized 
at  a rate of 40 samples/s, and finally stored on magnetic tapes for further analysis. 
The direct analogue outputs from the wave gauges are also used for producing wave 
profiles from a four-channel oscillograph, and for obtaining power spectra from an on- 
line spectrum analyser. More detailed information related to experimental facilities, 
instrumentation and experimental procedures are described in Su et al. 1982. 

3. Stuctures of skew wave patterns 
Since it is found that the skew wave patterns show up when 0.16 2 a,k, 2 0.18, 

we shall use a typical example with a,k, = 0.17 to illustrate typical characteristics 
of the wave patterns observed in our experiments. For clarity in presenting the rather 
complicated three-dimensional wave patterns, the entire wave field is divided into 
the following five regimes, each of which has its distinctive feature: 

(i) Stokes waves, 
(ii) skew wave patterns, 
(iii) interactions of skew wave patterns, 
(iv) Benjamin-Feir modulations of Stokes waves, 
(v) Benjamin-Feir modulations of skew waves. 

Locations of these five regimes are shown in figure 2 for easy reference to the later 
description of each regime separately, For the example with a,ko = 0.17, the other 
wave parameters used aref, = 1.24 Hz, a, = 2.7 cm, A, = 0.95 m and c, = 1.25 m/s. 

3.1. Stokes waves 

The first regime is composed of uniform Stokes waves which are generated by the 
mechanical wavemaker. The transient characteristics associated with the particular 
wave-making process die out exponentially. Thus, at  the location x = 6.1 m, y = 0, 
where the initial reference waves are measured, the waves can be considered close to 
Stokes waves. 

3.2. Skew waves 

Figure 3 (a)  shows a photographic image of four skew wave patterns that propagate 
to the right side of the x-axis. Figure 3 ( b )  is an annotated line drawing corresponding 
to figure 3(a). The area with lighter tone has waves of lower wave heights than the 
area with darker tone. Figure 4 shows a clearer view of three-dimensional wave- 
forms of the skew wave groups from the vantage point of the tower at  location A 
(figure 1). The waves between two lighter tone areas (i.e. lower wave height) will be 
called a skew wave pattern, and each pattern propagates at  an angle 'F with respect 
to the direction (x-axis) of the initial Stokes wavetrain. The separation distances 
between two light-tone bands along the x- and y-axes will be called respectively the 
normal and the crestwise wavelengths of the skew wave patterns A,, and Ays (figure 2). 
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The travelling velocity of the skew wave pattern normal to the Y-direction will be 
called the pattern velocity C,, of the skew wave pattern. The crestwise wavelength 
and the propagation angle of the skew wave pattern can be most easily measured from 
the photographs, utilizing the known co-ordinates of the markers. As an example, in 
figure 3 ( b )  a light-tone area is seen t o  extend from point A (x = 18.3 m, y = 0) to point 
B (x = 36.5 m, y = 6.1 m); thus the propagation angle is estimated to be 

BC 20 
Y 2: arctan- = arctan- = 18.4', 

AG 120- 60 

where point C is at  x = 36.6 m, y = 0. Next, for estimating A,, we see that the distance 
from point D (x = 24.4 m, y = 6.1 m) t o  point E (x = 24.4 m, y = 0) is about 2*7A,,. 
A more accurate measurement of the crestwise wavelength and the group velocity 
of the skew wave groups are obtained from the in situ surface-displacement measure- 
ment by an array of wave-height gauges. Figure 5 (a)  shows a set of temporal records 
of surface displacements measured by six wave-height gauges located at x = 30.5 m, 
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FIGURE 3. (a)  Image of skew wave patterns with aoko = 0.17, jo  = 1.25 Hz, A, = 1.03 m. 
( b )  Annotation of (a)  for determining the propagating direction and A,, and Aaw. 
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(a) (6) 
FIGURE 4. Close-up images of skew wave patterns for a,k,  = 0.17. 

and yi = i A y + 6 - 7  m (i = 1,2 ,  ..., 6 , A y  = 0.61 m). The time interval At,, between 
times t, and t, is the average time for a skew wave group traversing a fixed-location 
wave gauge. The time interval At,, between times t, and t, indicates the time required 
for the skew wave group to travel a distance of y = 3.06 m between the first and sixth- 
wave height gauges in the direction of the y-axis. Thus the corresponding crestwise 
wavelength and the pattern velocity (normal to the Y-direction) are given by 

For this particular example in figure 5 ( a ) ,  we have 

h US = 2.84 m = 2-8A0, 

C,, = 0.035 m/s = 0.0245C0. 
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FIGURE 5 .  (a)  Six time records of wave profiles measured simultaneously a t  z = 30.5 m and 
(1) y = 7.32 m, (2) 7.93 m, (3) 8.54 m, (4) 9.15 m, (5) 9.76 m, (6) 10.4 m, showing the 'pure' 
skew wave pattern. (b)  Same as (a) except that z = 42.7 m. 

Figure 5 (b )  shows a different set of temporal records of surface displacements, which 
exhibits a slower C,, than that in figure 5(a) .  From the experimental measurements 
for the initial wave steepness 0.16 2 aoko 2 0.18, it is found that 

15" < Y < 20", 
2*5A0 < A,, < 3.5h0, 

Hence the propagation angle Y of the skew wave group varies only slightly, with a 
mean Y = 18.5", while the crestwise wavelength has a relatively larger variation. 
The pattern velocity of the skew wave patterns is seen to be about one-fiftieth of the 
phase velocity of the initial Stokes waves. Thus the skew wave patterns appear almost 
stationary to an observer standing on the wavemaker. 

&C, < c,, < &C,. 
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FIGURE 6. For caption see facing page. 
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tcl 
FIGURE 6. Three stages of evolution of skew wave patterns for a,k, = 0.17. (a )  Beginning of 
the wavetrain. (b)  Full development of the skew wave patterns. ( c )  Termination of the wave- 
train. 

Figures 6 (a-c) show the wave patterns at  three consecutive stages of the same wave- 
train that produces the skew wave patterns. In all these stages, the leading wave- 
fronts have not reached the side walls of the wide basin. In the first stage (figure 6a) ,  
when the leading wavefront reached x = 36.6 m, the skew wave patterns have started 
to appear. In  the second stage (figure 6 b ) ,  when the leading wavefront reached 
x = 61 m, several skew wave patterns are clearly established. In the last stage (figure 
6 c ) ,  when the wavetrain was terminated by stopping the wavemaker, the skew wave 
patterns are seen to extend clearly all the way to the trailing end of the wavetrain 
(around x = 30.5 m). 

Finally, the envelope R(t) of the wave profiles such as those shown in figure 5 ( a )  
can be used to estimate the y-direction variation of the wave height over a single 
skew wave pattern H(y) by applying an appropriate factor: 

H(y - yo) = R[C,,(t - to)  sin Y]. 

3.3. Interactions of skew wave patterns 

Referring to figures 2 and 7 (a ,  b ) ,  in the converging cone-shaped area defined by the 
triangle ABC in figure 2, we can see a checkerboard pattern that results from inter- 
actions between two sets of the skew wave patterns which propagate in the different 
directions ( Y). The normal and crestwise dimensions of each diamond-shaped 
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wave pattern are equal t.0 the corresponding dimensions for the ‘pure’ skew wave 
patterns described in 9 3.2. This wave pattern is an actual example of a narrow-band 
two-dimensional wavenumber spectrum described by Longuet-Higgins ( 1976, figure 1) .  
We also observed that the wave heights in the centre region of each diamond- 
shaped wave pattern are higher than both the wave height of the initial Stokes waves 
and the ‘pure’ skew wave patterns in 0 3.2. Furthermore, two sets of the skew wave 
patterns emerging after the mutual interactions seem to retain their pattern shape 
without obvious destructive interference. These features may imply that the skew 
wave pattern, although propagating obliquely from the original Stokes-wave direction, 
behaves as a pattern of normal Stokes waves. These waves are seen to be stable to 
finite-amplitude superharmonic disturbances. 

3.4. Benjamin-Feir modulations of Stokes waves 

Referring to figures 2 and 6 ( b )  in the diverging core-shape (ECF in figure 2) centred 
on the x-axis, and y 36.6 m (35h0), we can see predominantly two-dimensional 
wave-envelope modulations in the direction of the original Stokes waves. These 
modulations are caused by the two-dimensional side-band instabilities (Benjamin & 
Feir 1967; Longuet-Higgins 1978). The corresponding group velocity (C,),, of the 
modulations is roughly one-half of the phase speed, C,. The corresponding modula- 
tional period TBF and the modulational wavelength hBF, for aoko = 0.17, are T,, N 6T0 
and A,, 21 3h0. 

Figure 8 shows two typical time series of wave profiles measured at x = 42.7 m 
(42h0) and x = 54.9 m (54h0), y = 0. The envelope modulations of every 5 t o  6 wave 
periods clearly show up in the first time series, as expected, while more irregular 
modulations are shown in the second time series. The latter phenomenon is related 
to a significantly different long-time behaviour of the side-band instabilities, which 
effectively shift the peak frequency of the spectrum of the original unstable wave- 
train to  a lower frequency (Su 1981). 

3.5. Benjamin-Feir modulations of skew waves 

Referring to figures 2 and 6(b, c), in the region overlapped by the pure skew waves 
and the Benjamin-Feir modulations of Stokes waves, we can see a series of compact 
three-dimensional wave groups which are results of interactions between the above 
two characteristically different waveforms. These compact wave groups assume 
shapes of a skewed diamond. The normal wavelength is the same as for the Benjamin- 
Feir modulation of Stokes waves, while the crestwise wavelength is the same as for 
the ‘pure’ skew wave patterns. The gross appearance of the envelope of the compact 
wave group seems to indicate that the different characteristics of the skew waves and 
Benjamin-Feir modulations are not affected by their spatial co-existence. Figure 9 
shows a set of six time series of wave profiles measured within the mixed regime. 
Two types of envelope modulations can be seen clearly; one with a period about 6T0, 
and the other with a period about 150T0. The shorter-period modulations with a 
marked symmetry are caused by Benjamin-Feir instabilities, while the longer 
modulations are due to the much slower movement of the skew wave pattern 
(see 3 3.2). 
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FIGURE 7. Two photographic images of interactions of skew wave patterns 
propagating from different directions Y = &- 18'. 
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FIGURE 8. Two time records of wave profiles for a,&, = 0.17 a t  (a)  x = 42.7 m, y = 0, and ( b )  
x = 54.9 m, y = 0, showing the modulational envelope due to Benjamin-Feir instability. 

3 i 1 d (min) 
FIGURE 9. Six time records of wave profiles for a,&, = 0.17 a t  x = 48.8 m, and y = 12.2 m to 
15.3 m with 0.61 m separation, showing the interaction of skew waves (longer modulations) 
and Benjamin-Feir modulation (shorter modulations). 

Rather than regarding the phenomenon as the interaction of the two types of wave 
patterns, it may be physically more accurate to state that the skew waves, just like 
the regular Stokes waves, are unstable to the subharmonic side-band instability. 
Furthermore, with the initial wave steepness near aoko = 0.17, the growth rates for 
the side-band instability and the bifurcation of the Stokes waves to the skew waves 
are about the same. We note that the skew waves are observed clearly in our experi- 
ment only in a fairly narrow range of steepness, i.e. 0.16 2 aoko 2 0.18, and that the 
predominantly two-dimensional envelope rnodulsLtions of Benjamin-Feir instability 
show rather uniformly over a widerrange of steepness, i.e. 0.1 < aok, < 0.25 (Longuet- 
Higgins 1978; McLean et al. 1980; Su 1981). These observations would imply that the 
bifurcation rate for the skew waves would be much lower than the growth rate of the 
Benjamin-Feir instability for aoko < 0.16 and aoko > 0.18. Finally, we note another 
difference between the skew waves and theside-bandmodulation ; the former, developed 
from the bifurcation, remains fairly steady in form over 100To, while the latter is 
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FIGURE 10. Three-dimensional symmetric waves of L, configuration observed in 
the wide wave basin; fo = 1.2 Hz, aoko = 0.33. 

intrinsically transient, and transforms to a wavetrain with lower carrier frequency 
over about 50T,. 

4. Structures of symmetric wave patterns 
4.1. Conjgurations of wave patterns 

For clarity of the description of observations which follow, we define the characteristic 
scales of the wave field. The wavetrain is initially composed of waves with length A,, 
amplitude a,, wavenumber k, = 2n/h, and frequency f,. The three-dimensional 
symmetric waves have crestwise wavelength A,, and their subharmonic periodicity 
is L, = mh, (m = 2,3,4,  . . .). The initial wave steepness is a,k,. 

Figure 10 shows a typical example of crescent-shaped symmetric waves in the wide 
basin ( I  x 100 x 340 m) for the conditions fo = 1.2 Hz, a,k, = 0.33, A, = 1-08 m and 
A,, = 0.915 m. Figures 11 and 12 represent typical symmetric waves with the same 
initial parameters as shown in figure 10, but are observed in a tow tank (3.66 x 3.66 
x 137 m). 

In  all of our measurements only three distinct spatial configurations of symmetric 
waves occur. The first and most frequent configuration is denoted as L, = 2A,, and 
is sketched in figure 12. Figure 12(a) represents the top view of wave crests. The 
example given in figure 10 belongs to this category. Note that the crests are shifted 
by one-half of the width of the crescents ($ABC) on successive rows. I and I1 in figure 
12(b) are typical profiles observed at y = 0 and y = $A,,, i.e. at crescent centre and 
quarter-width respectively. The corresponding maxima (crests) and minima (troughs) 
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PIFIGURE i f .  Two examples of three-dimensional symmetric waves of L, and L, configurations 
observed in the tow tank: j o  = 1.2 Hz and aoko = 0.33. The letters H and L are used to point 
out the high and low crests, respectively. 
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FIGURE 12. Definition sketch of L, configuration of symmetric waves. (a )  Top view of wave 
crests. ( b )  Wave profiles along y = 0 (I) and along y = $A,, (11). 

occur a t  Pi ( i  = 1,2,  ..., 8). The trough a t  P4 is deeper than the trough at  Pz. The 
wave profile I1 in figure 12 exhibits less distortion than the profile I, and is similar t o  
the form meesured close to the wavemaker. A set of records obtained from 13 gauges 
a t  intervals of 4 cm (2: over the range y = 0 to y = +ABc is presented in 
figure 13. Wave profiles (a)  and (m) in figure 13 correspond to  the sketch profile I 
in figure 1 2 ( b )  and the wave profile (9) in figure 13 corresponds t o  11. 

The second configuration of the symmetric waves characterized by the subharmonic 
scale L, = 34,  is sketched in figure 14. Figure 14(a) is the top view of the crests. 
The corresponding typical profiles for y = 0 and y = +ABc are represented 
respectively by I and I1 in figure 14(b). Note that every third row of symmetric 
waves has a *ABc crestwise shift with respect to the other two rows. These sketches 
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FIGURE 13. Measurement of wave profiles for L, configuration at points, 
a (y = 0) t o  m (y = AB) with an equal increment Ay = 4 cm = -21iAac. 

represent wave patterns which are noted by arrows in figure 11. Records of wave 
profiles for this configuration are presented in figure 15. The distribution of sensors 
is identical with that used to obtain the results in figure 13. 

The third configuration characterized by L, = 44, is sketched in figure 16. The 
wave fields as seen from above are shown in figure 6 (a),  and the corresponding wave 
cross-sections a t  y = 0 and y = $ABc are represented by I and I1 in figure IG(b). 
In  this case, two rows of symmetric waves with the same crestwise relationship are 
followed by two other rows of the same kind, but with a &ABc creatwise shifting be- 
tween these two pairs. The L, configuration is geometrically equivalent t o  the L, 
configuration, with doubling each row of symmetric waves of the latter. Measure- 
ments of wave profiles for this case are given for the second to  the fifth waves in 
figure 17 .  The distribution of sensors is the same as that used in figure 13. 
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ft- A6 + A 5  + A4 4 
FIGURE 14. Definition sketch of L, configuration of symmetric waves; (a) Top view of wave 

crests. (6) Wave profiles along y = 0 (I) and along y = $ABo (11). 

The records in figure 17 include all three types of symmetric wave configurations 
described thus far. A rough estimate based on experimental measurements indicates 
that the L, configuration occurs more than 90 % of the time, and that the L, and L, 
configurations have less than 10 % and 1 % incidence of occurrences respectively. In 
view of the very low probability of occurrence for the L,, we shall discuss only the 
conditions under which L, and L, are present. 

4.2. Height and slope structures 

Since all the symmetric waves observed in the experiments for the range of initial 
steepness (0-25 < ak < 0.34) of steep deep-water gravity wavetrains have similar 
profiles, we shall use some typical examples to represent their structures. The surface 



90 M . - Y .  SU 

g 

f 

e 

d 

C 

b 

a 

FIGURE 15. Measurement of wave profiles for L, configuration a t  a (y = 0) to m (y = &A,,) 
with an equal increment Ay = 4 cm = &ABD for the interim profiles b to I respectively. 

slope S, in the direction of wave propagation is computed from the digital wave- 
height records : 

where 7 = ~ ( x ,  y) is the water-surface elevation a t  location (x, y), c is the phase speed 
of the waves and At is the time interval between two digital samples, which is s 
in our measurements. Since the time scale of appearance of the three-dimensional 
symmetric waves is about ten wave periods, which a.re equal to 0.83 s, the surface 
slope, as computed by the above approximation, would be subject to less than 1 % 
error due to the assumption of frozen pattern. The presence of small capillary waves 
and a meniscus around the wave-height sensor element would limit any higher accu- 
racy in computing surface slopes. 

We must now explain why we used the phase speed c, rather than the group speed 
in (1) for estimating the surface slope of the symmetric wave-s. This was based on both 
the experimental observation that the three-dimensional symmetric waves move a t  
the same speed of the underlying two-dimensional fundamental waves, and on the 
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FIGURE 16. Definition sketch of L, configuration of symmetric waves. (a) Top view of wave 
crests. ( b )  Wave profiles along y = 0 (I) and along y = +ABc (11). 

theoretical characteristics of the three-dimensional instabilities (see § 5 for more 
discussions). 

As a reference, we first give an example of the waveforms a t  x = 6.1 m (z 5-6A0 
from thewavemaker). The pertinent parametersaref, = 1.2 Hz, wavelength A, = 1-08 m 
and wave height H, = 20, = 11-5 em, with wave steepness a,k, = 0-33. The crest- 
wise wavelength of the symmetric waves, which is most distinct a t  x = 27.5 m 
(N 25.5h0), is A,, = 0.915 m. Figures 18(a., b )  show the temporal record of surface 
displacement and the corresponding local surface slope in the direction of wave 
propagation at  y = 0 to  y = &ABc, with an equal increment of Ay = 4 cm (see figure 
12 for definition of the co-ordinate system). Close similarity among the 13 curves in 
figures 18 (a, b) demonstrates not only the two-dimensionality of the initial waveform, 
but also the consistency among the 13 wave-height sensors used in the experiments. 
For clarity, we have replotted the surface displacement and its corresponding surface 
slope in figure i8(c) for one particular sensor a t  y = &IBc. Note that the maximum 
S, is about 0.45, which is about 20 % lower than Stokes limit,ing slope a t  the cusp of 
the crest (AS'&, = cos 30" = 0.577. 

4 F L M  I24 



92 M . - Y .  su 

FIGURE 17.  Measurement of wave profiles for mixed L,, L, and L, configurations 
with other labels same as in figure 00. 

Figures 19 (a,  b )  present the surface displacement and local surface slope for the L, 
configuration of symmetric waves. For clarity seven of these series are replotted in 
figure 20(a-g). Along the wave profile at y = 0 (figure 20a), the forward faces of the 
higher waves are seen to be steeper than the rear face. The maximum S, on the forward 
face is 0.65 in figure 2O(a), and 1.02 in figure 20(e); they exceed (S&. It is believed 
that this is the result of the three-dimensionality of the symmetric waves. The slope 
of the forward face of the lower wave is about the same as the rear face, and the 
maximum S, is about 0.33, which is lower than the maximum slope of the initial 
waves (0.45). Other parameters defined in figure 12 and some characteristic ratios of 
interest are (along y = 0) 

A, = 94.6 em, 

h,, = 13.3 cm, 

A, = 121-4 cm, 

h12 = 12.1 cm, 

h2/hl = 1.28, 

h,, = 8.0 cm, h22 = 9.1 cm, 

h,, = 1.1, - 'h - - 1-68, ___ h11+h12 - - 1-49, - h21 - - 0.88. 
h12 h21 h2, + h22 h22 
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Along y = ah,, (figure 20g) both the surface displacement and the slope are similar 
to those a t  x = 6.1 m (figure 18c). 

Figures 21 (a, b )  present the plots of surface displacement and local slope, respec- 
tively, for the L, configuration. For clarity three sets of corresponding surface dis- 
placement and slope are given in figure 22 (a-c). Note that the waveform shows two 
high waves and one low wave along y = 0, and one high wave and two low waves 
along y = $A,,. Along y = 0, the maximum values of S, of the forward and rear 
faces of the first high wave are 0.655 and 0.495 respectively; the corresponding values 
for the second high wave are 0.55 and 0.47, and those for the lower waves are 0.235 
and 0.32. Along y = $A,,, the maximum values of S, of both the  forward and rear 
faces of the first low wave are 0.24 and 0-29 respectively; the corresponding values 
for the second low wave are 0.25 and 0.31; and those for the higher wave are 1.1 and 
0.60. These typical values of local surface slope thus show that the overall maximum 
local slope occurs on the forward face of the high wave along h = $A,,. Other para- 
meters of interest as defined in figure 14 and their ratios are 

A, = 103 cm, A, = 96.6 cm, 

h, = 12.2 cm, h, = 10.6 cm, 

A, = 124.4 cm, 

h3 = 7-2 cm, 

h - hl = 1.7, - h2 - - 1-47, - ” - - 0.83, 2 = 0.78. 
h2 h3 A3 A3 

Comparing the maximum local slopes between the L, and L, configurations, the highest 
local slope is found to occur in the latter configuration, and its values exceed the 
Stokes limiting slope (Sx)m by more than 70 yo. This effect is attributed to the three- 
dimensional structure of the symmetric waves. 

4.3. Amplitude spectra of symmetric waves 

Next we examine the spatial variations of amplitude spectra computed from time 
series of surface elevation in the L, and L3 configurations. 

Assume that the initial waves near the wavemaker have the basic frequency f,,, 
and higher harmonics with 

Then the L, configuration, which has a periodicity of two wavelengths along y = 0,  
will contain additional frequency components 

f, = nfo fn = 1,2,3, ...). 

fm = 4(2m+ l)fo (m = 0 ,1 ,2 ,3 ,  ...). 

There will be a new subharmonic componentfo = 3 fo, as well as a series of new super- 
harmonic components J”, (m = 1 ,2 ,3 )  distributed about mid-frequency between the 
original harmonics f,. Similarly, for the L, configuration, which has a periodicity of 
three wavelengths, additional new components are 

fo = i f o ,  jm = 3(3m + 1) f o .  

When a waveform is a mixture of L, and L, configurations, all of the wave components 
with f,,fn,, andfm are found in the computed amplitude spectrum. This heuristic model 
is consistent with measurements of the amplitude spectra, which are the amplitudes of 
the Fourier transform of the time series of wave records at  seven equally spaced 
locations from y = 0 to y = &A, with Ay = 4 cm (figure 23). Note that the wave profile 

4-2 
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FIGURE 18. For caption see facing page. 

a t  y = th,, is similar to the initial waveform (figure 18c); thus the corresponding 
amplitude spectrum consists of only the basic wave component with fo = 1.2 Hz, 
plus three harmonics a t  fi = 2,4 Hz, fi = 3.6 Hz and f3 = 4.8 Hz, with the rest being 
very small. The wave profile along y = 0 is a mixture of more than 90 yo of the L, 
configurations and less than 10 yo of the L, configurations; thus the corresponding 
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FIGURE 18. ( a )  Plots of wave profiles for y = 0 to y = +ABc with y = 4 cm N &ABC for initia 
waves at  z = 6.1 m ;  j o  = 1-2 Hz, a,,& = 0.33. The horizontal scale is At = %I,- s. The bottom 
wave profile is plotted to the vertical ordinate and the others are translated by 1 cm successively. 
(b )  Plots of surface slope corresponding to the wave profiles in (a).  The lowest curve is plotted 
for values of the true ordinate and the other curves are offset vertically by 0.1 successively. 
( c )  Plots of corresponding surface displacement and surface slope for one location of y = +ABc 
of (a) and (b ) .  

Time (A t  = &s) 

amplitude spectrum shows the wave components a t  fl = 1.8 Hz, f2 = 3.0 Hz, f3 
= 4-2 Hz andf4 = 5-4 Hz, in addition to those a t  fo, fi, fi, f3 and fa. 

5. Interpretation and comparison with theory 
R e  shall now give an interpretation of the skew and symmetric waves by comparing 

our observations with the theoretical computations by Saffman & Yuen (1980) and 
Meiron et al. (1982), who predict the existence of such waves based on the Zakharov 
equation, which is valid for weakly nonlinear waves (Zakharov 1968), and with the 
new type of three-dimensional instability discussed by McLean et al. (1980) and McLean 
(1982). 

Are the experimentally observed skew waves the same as the theoretical prediction 
of Saffman, Yuen and Meiron? Before answering this question, we would like to rule 
out two other more obvious explanations that will be shown t o  be incompatible with 
the wave phenomenon under consideration. The first explanation is to regard these 
skew waves as regular standing wave patterns resulting Born superposition of the 
original Stokes waves and some reflected waves from the side walls of the wide basin. 
In  figure 6 ( c )  the skew waves are seen to extend all the way to the trailing edge of the 
terminated wavetrain. If reflected waves with a frequency and amplitude comparable 
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FIGURE 19. (a)  Plots of wave profiles for L, configuration of symmetric waves. The method of 
presentation is the same as in figure 18(a). ( b )  Plots of surface slopes corresponding to (a). 
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FIGURE 20. Plots of corresponding surface displacement and surface slope 
for each y in figure 19 (a). 

to those of the Stokes waves existed there, we should have observed them in the wake 
behind the trailing edge. No such reflected waves are visible in figure S(c). Thus the 
standing waves cannot be used for explaining our observations. The second explana- 
tion is the permanent wave groups obtained analytically by Hui & Hamilton (1979) 
from the three-dimensional nonlinear Schrodinger equation which is derivable from 
a further approximation of Zakharov equation (Zakharov 1968). These predicted 
permanent wave groups have propagation directions either greater or less than a 
characteristic direction Yc = arctan J f r  = 35.5" away from the fundamental (carrier) 
wave direction. However, the group-velocity component normal to the Y, direction 
of the permanent wave groups is equal to the group velocity of the Stokes waves, and 
is about twenty times larger than the pattern velocity of the observed skew wave 
patterns for Y = 18.5". Because of this large discrepancy between the two velocities, 
the theoretical permanent wave groups found by Hui & Hamilton are not the same 
as those found in our experimental observation. Perhaps the compelling reason for 
rejecting the above two interpretations is that the observed skew waves only occur 
clearly in a very selective narrow steepness range 0.16 < aoko < 0.18. 

Next, we shall txy to compare the experimental results with the theoretical com- 
putation of steady skew wave patterns appearing as bifurcations from the uniform 
Stokes waves based on the Zakharov equation (Saffman & Yuen 1980; Meiron et al. 
1982). It should be stressed that these computations are only approximately correct 
for moderate and steep waves owing to  the assumption of weak nonlinearity under- 
lying the derivation of the Zakharov equation. Generally, these computations over- 
predict the wave steepness for any given characteristics, as compared with those 
obtained from the exact water-wave equation (Crawford et al. 1981). Consequently 
one can only hope for qualitative, rather than quantitative, agreement. 

Three examples of the free surface corresponding to the bifurcated skew waves for 
p = &/A,, = 0.1, q = h,/h,, = 0.4, and b, = 0,  0.2 and 0.4 are given by Saffman & 
Yuen (1980). The example with b, = 0 corresponds t,o regular uniform Stokes waves, 
while the latter t w o  examples correspond t,o bifurcated skew waves of increasing 
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FIGURE 21. (a) Plots of wave profiles for L, configuration of symmetric waves in the same 
format as figure 18 (a). ( h )  Plots of surfacc slopes corresponding to (a). 
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FIGURE 22. Plots of corresponding surface displacement and surface slope for 
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FIGURE 23. Amplitude spectra A( f ) ,  which are the amplitudes of the Fourier 

transforms of wave-surface elevations corresponding to figure 19 (a).  

degree of bifurcation. The propagation direction 'J" (which is equal to 90" minus the 
direction of modulation used by Saffman, Yuen and Meiron) for these cases is 

The free surfaces resemble the skew wave patterns shown in figures 3 and 6. Further, 
a critical wave steepness for the bifurcation for these examples (from figure 1 of Saffman 
& Yuen 1980) is 0.20. This steepness is close to (but slightly larger than) the range 
of steepness 0.16 2 aoko 2 0.18 found to be most favourable for occurrence of the 
phenomenon. 
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Direction of propagation 

FIGURE 24. Crit'ical bifurcation-wave steepness as a function of propagation angle V' ; solid lines 
from Saffman & Yuen (1980). based on Zakharov's equation; the curve marked W (long dashed 
line) represents the neutral stabilky CUKVO obtained from Whitham's theory, which is exact for 
p ,  p approaching zero ; short dashed lines slio\.; t,lie cxpected 'correct' theoretical prediction (see 
5 5 for explanations) ; horizontally shadod area shows the region of experimental data for the 
skew wave patterns; the vertically shaded area shows the region of experimental data for the 
symmetric wave patterns. 

We could improve the comparison by understanding a little better the computations 
by Saffman, Yuen and Meiron. For this purpose, we have reproduced figure 2 of 
Saffman & Yuen (1980) in our figure 24, which gives the critical bifurcation-wave 
steepness as a function of propagation direction Y. Note that point A marked in 
figure 24 corresponds to the example cited above. Also plotted in figure 24 are two 
shaded regions where the skew waves and symmetric waves have been predominantly 
observed in the experiments. For the skew waves: 

15" < Y < 20", 0.16 < ak < 0.18, 0.12 < p < 0.14, 0.3 < p < 0.5. 

For the symmetric waves: 

23" < Y < 27", 0.25 < ak < 0.33, p = 0.5, 1.1 < p < 1.2. 

Figure 24 indicates that the critical bifurcation-wave steepness for p = 0-5, 0.1 and 
10-5 are all over-predicted for large ak; the values of steepness for Y = 90" (i.e. 
q = 0) as shown by points E ,  P and G are well above the Stokes limiting steepness 
0.443 (point H ) .  On the other hand, the entire curve for p = 0 based on Whitham's 
theory (Peregrine & Thomas 1979), and the two points B and C for q = 0 based on 
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the exact water-wave equation (McLean et al. 1980) are theoretically accurate. If we 
use as the necessary constraints the above known correct limiting points, and the 
general features of the curves by Saffman, Yuen and Meiron for the critical bifurca- 
tion steepness, we might expect the correct curves for the critical bifurcation wave 
steepness based on the exact water-wave equation for p = 0.5, 0-13 and 0-10 to 
resemble the dashed lines sketched in figure 24. These correct theoretical predictions 
then agree quantitatively with our experimental observations for both bifurcated 
skew waves and symmetric waves, as far as the critical wave steepness and the pro- 
pagation direction are concerned. 

The Saffman-Yuen-Meiron theory has built in it an assumption that the component 
of the phase velocity of the steady skew wave in the fundamental wave direction is the 
same as that of Stokes waves. In  other words, these skew waves are phase-locked to 
the Stokes waves. On the other hand, the observed skew wave patterns show only a 
small, yet finite, forward movement relative to the wavemaker at about one-fiftieth 
of the phase speed of Stokes waves. This discrepancy between the experimental 
observations and the Saffman-Yuen-Meiron model indicates that the observed skew 
waves are also not those calculated by these latter authors. 

Next, we consider the stability of the skew waves to infinitesimal perturbations, 
as demonstrated theoretically by Saffman, Yuen and Meiron. What they have shown 
is that there is no change of stability with respect to infinitesimal disturbances near 
the bifurcation point. Since the Stokes waves are known t o  be unstable to subharmonic 
side-band instabilities of Benjamin-Feir type, the bifurcated skew waves should be 
subject to the same instabilities, as demonstrated clearly in our experiments. In order 
to demonstrate the relative stability of the bifurcated skew waves to superharmonic 
finite disturbances, we conducted some experiments purposely during windy con- 
ditions when there are natural wind-generated short gravity waves (A ,  < 0-30 m) in 
the basin. Into these pre-existent perturbations, we generated the mechanical waves 
with a,k = 0.17 and A, = 1 m. We observed the skew wave patterns as shown in 
figure 25. 

The bifurcation theory (Saffman-Yuen-Meiron) for the skew waves (similarly for 
symmetric wave does not provide information on the selection rules for the preferred 
values of p and q, which determine the spatial scales A,, and A,, of the skew wave 
pattern. The example in Saffman & Yuen (1980, figure 4) for p = 0.1 and q = 0.4 cited 
earlier has been chosen based on some earlier experimental observations provided by 
our earlier investigation. Such selection rules may be related to the three-dimensional 
instability discovered theoretically by McLean et al. (1980)) using a linear perturba- 
tion analysis of the exact water-wave equation. According to this theory the most 
unstable mode occurs at  p = 0-5 and q 2: 1.6 for 0-1 < a,k, < 0.2. The corresponding 
propagation direction of this mode is 

0.5 
1.6 

Ym = arctan- = 17.4', 

which is close to the preferred propagation direction of the skew wave patterns, 

Y, = arctan+ = 18.5". 

Figure 24 shows that the theoretical propagation direction of the skew waves is 
centred around 18.5' and is relatively insensitive to  variation of wave steepness in 
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FIGURE 25. Skew wave patterns (aoko  = 0.17, A, = 1 m) observed on a background of natural 
wind-generated short gravity waves with A, < 0.30 m in the basin during a windy condition. 

the range 0.1 < uk < 0.20. The three-dimensional unstable mode has a normal com- 
ponent of phase velocity equal to the Stokes waves. However, the crestwise wavelength 
of this unstable mode is only about one quarter ( 2  0.4/1.6 = a) of the observed skew 
waves. Because of this discrepancy, we feel that the observed skew waves could not 
be explained satisfactorily by the above-mentioned theories. 

It is interesting to consider possible effects of the finite crest length of the wave- 
maker employed in the experiments on the three-dimensional wave patterns. If me 
had had an infinitely long wavemaker to generate a true two-dimensional Stokes 
wave with 0.16 2 uoko 2 0.18, then we would not be able to observe the predominantly 
‘pure ’ skew waves, nor Benjamin-Feir modulationsof Stokes waves. Only the diamond- 
shaped wave patterns due to interactions of the two sets of skew wave patterns and 
Benjamin-Feir modulations would be observed. Some synthetic aperture radar 
(SAR) images of hurricane waves seem to indicate existence of such wave patterns 
in the real oceans (King & Shemdin 1978). 

The three-dimensional short-crested symmetric waves observed in the tow tank 
and the wide basin bear remarkably close resemblance to those spilling breaking 
waves commonly observed in the growing seas. Some particularly clear pictures of 
this type of waves in the open ocean can be found in Kinsman (1965, p. 536); there 
is some regularity in the entire wave pattern, in which several wave3 are breaking, 
and the crests of these breakers appear as crescents. Two other photographs (Cokelet 
1977, figure 7; Gross 1977, p. 202) show similar features, with more details of wave- 
forms a t  the breaking points and with some trailing foam behind breaking. Donelan, 



106 41.- Y .  su 

Longuet-Higgins & Turner (1978) reported some qualitative observations of white- 
capping in which they noticed that the time interval between successive white caps 
was roughly twice the wave period. They explained this periodicity as a result of wave 
groupiness in the growth stage of wind waves. 

McLean et al. (1980) pointed out that  two main types of instabilities exist for waves 
in deep-water which they called type I and type 11. The type I instability& an exten- 
sion of the well-known side-band instability first discovered by Benjamin & Feir 
(1967) in the two-dimensional case for small w a r e  steepness and long-wave pertur- 
bations. It is predominantly two-dimensional, in that the maximum instability 
occurs for a two-dimensional perturbation. The type I1 instability, in contrast, is 
predominantly three-dimensional, in that maximum instability always occurs for 
fully three-dimensional perturbations. For small ak, the type I instability dominates. 
At ak = 0.3, the type I1 overtakes type I. The type I instability disappears a t  ak 2: 0-39, 
while the type I1 instability continues to increase in magnitude. At ak 2 0.4, the type 
I1 instability develops a two-dimensional special case (see &Lean et al. 1980, figure 
lg) ,  which is the ‘new instability’ found by Longuet-Higgins (1978) in his two- 
dimensional calculations. It should be noted that, even a t  this point, the maximum 
growth rate still occurs for fully three-dimensional perturbations. 

Another important difference between the type I and I1 instabilities may help to  
distinguish them. The perturbation frequency of the type I is not small. The modula- 
tional envelope due to the subharmonic instabilities travels with the group velocity, 
which is roughly half the phase velocity. Hence each wave group displays about twice 
as many waves in a temporal record as in a spatial record (such as recorded on a photo- 
graph). In  the type I1 instability, the perturbation frequency is small in both the 
two-dimensional case (Longuet-Higgins 1978) and the three-dimensional case (McLean 
1982; McLean et at. 1980). Hence each wave group in the type I1 instability travels 
with the basic phase velocity, and their variation in space looks roughly the same as 
their variation in a time record. So when in a time record we see alternately high and 
low crests, it is probably a type I1 instability. But if we see wave groups with four or 
more waves, it is probably a type I instability. Thus, i t  seems to be of no doubt that 
the three-dimensional type I1 instability causes the L, configuration of symmetric 
waves. 

The above discussion on the linear analysis of instabilities provides only a possible 
cause for onset of the three-dimensional symmetric waves. Meiron et nl. (1982) will 
provide theoretical computations based on a set of approximate equations valid for 
weak nonlinearity of three-dimensional symmetric wave patterns which are obtained 
as bifurcations from two-dimensional Stokes waves. These theoretical wave patterns 
are found to agree well, qualitatively, with the experimental measurements. 

6. Conclusions 
Based on experimental observations, measurements and comparisons with the 

existing theoretical computations on the bifurcation and instability of a uniform 
Stokes wavetrain into the skew and symrnetrit \I-tLve patterns, we may draw the 
following conclusions. 

A uniform (two-dimensional) Stokes wavetrain bifurcates int3 three-dimensional 
steady skew ware patterns. The range of wave steepness for the bifurcation is 
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0.16 < aok0 < 0.18, and the corresponding direction of propagation is from 15' to 
20" away from the initial direction of the Stokes waves. 

The skew waves are unstable to subharmonic instabilities just like Stokes waves, 
and are relatively stable to superharmonic perturbations. The growth rate of the 
bifurcation is of the same order of magnitude as the side-band instabilities for the 
above steepness range. Three-dimensional compact wave packets form owing to the 
subharmonic instabilities of the skew wave patterns. 

Interactions of the skew wave patterns propagating from different directions also 
create compact three-dimensional wave packets. The skew waves emerge seemingly 
without change from the interactions. Thus, in many respects, the skew bifurcated 
waves behave in the same manner as Stokes waves. 

The close overall similarity of the observed symmetric wave patterns to the theore- 
tical computations of steady symmetry wave patterns suggests that these waves can 
be considered to be bifurcations from an initial steep two-dimensional Stokes wave- 
train. The crescent-shaped symmetric waves in the laboratory resemble spilling 
breakers commonIy observed in the ocean, and are self-similar in structure, and 
relatively independent of initial wave steepness for 0-25 < aoko < 0.33. 

The cross-sectional measurements of surface elevation of these symmetric waves 
reveal three main configurations, with subharmonic periodicity of two, three and 
four basic wavelengths. The estimated probability of occurrence for these configura- 
tions is about 90, 10 and 1 % respectively. The maximum local surface slope on the 
forward face of the short-crested breakers is much higher than the Stokes limiting 
slope of 0.577 by as much as 70 owing to the three-dimensionality of the symmetric 
waves. 

I would like to express my thanks t o  M. Bergin, P. Marler and R. Myrick for assist- 
ance in experiments and data processing, and to Drs A. W. Green and R. Zalkan, 
and Professors W. H. Hui and M. S. Longuet-Higgins for helpful comments and 
suggestions that improved an earlier manuscript. I am grateful to Professor P.  G. 
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